Вольтметр на PIC16F676 – статья, в которой расскажу о самостоятельной сборке цифрового вольтметра постоянного тока с пределом 0-50В. В статье приводится схема вольтметра на PIC16F676, а также печатная плата и прошивка. Вольтметр использовал для организации индикации в лабораторном блоке питания.
Технические характеристики вольтметра:
- Дискретность отображения результата измерения 0,1В;
- Погрешность 0,1…0,2В;
- Напряжение питание вольтметра 7…20В.
- Средний ток потребления 20мА
За основу конструкции взята схема автора Н.Заец из статьи «Миливольтметр». Сам автор очень щедрый и охотно делится своими разработками, как техническими, так и программными. Однако одним из существенных недостатков его конструкций (на мой взгляд) является морально-устаревшая элементная база. Использование которой, в нынешнее время, не совсем разумно.
Далее в статье я расскажу, как переделать вольтметр автора под современную элементную базу. Правки будут внесены и в рабочую программу.
На рисунке 1 показана принципиальная схема авторский вариант.
Рисунок 1 – Авторский вариант схемы.
Бегло пробегусь по основным узлам схемы. Микросхема DA1 – регулируемый стабилизатор напряжения, выходное напряжение которого регулируется подстроенным резистором R4. Такое решение не очень хорошее, так как для нормальной работы вольтметра необходим отдельный источник постоянного тока напряжением 8В. И это напряжение должно быть неизменным. Если входное напряжение будет меняться, то и выходное напряжение будет изменяться, а это не допустимо. В моей практике такое изменение привело к перегоранию PIC16F676 - микроконтроллера.
Резисторы R5-R6 – это делитель входного (измеряемого) напряжения. DD1 - микроконтроллер, HG1-HG3 – три отдельных семисегментных индикатора, которые собраны в одну информационную шину. Применение отдельных семисегментных индикаторов сильно усложняют печатную плату. Такое решение тоже не очень хорошее. Да и потребление у АЛС324А приличное.
На рисунке 2 показана переделанная принципиальная схема цифрового вольтметра.
Рисунок 2 – Схема принципиальная вольтметра постоянного тока.
Теперь рассмотрим, какие изменения были внесены в схему.
Вместо регулируемого интегрального стабилизатора КР142ЕН12А было принято решение использовать интегральный стабилизатор LM7805 с постоянным выходным напряжением +5В. Тем самым удалось надежно стабилизировать рабочее напряжение микроконтроллера. Еще один плюс такого решение - это возможность применения входного (измеряемого) напряжения для питания схемы. Если, конечно, это напряжение больше 6В, но меньше 30В. Чтобы подключиться к входному напряжению, достаточно только замкнуть перемычку(jamper). Если сам стабилизатор сильно греется, его необходимо установить на радиатор.
Для защиты входа АЦП от перенапряжения в схему был добавлен стабилитрон VD1.
Резистор R4 совместно с конденсатором С3 - рекомендованы производителем, для надежного сброса микроконтроллера.
Резистор R3 был введен в схему, для надежной защиты от паразитных помех.
Вместо трех отдельных семисегментных индикаторов был применен один общий.
Для разгрузки отдельных ножек микроконтроллера были добавлены три транзистора.
В таблице 1 можно ознакомиться со всем перечнем деталей и возможной их заменой на аналог.
Позиционное обозначение | Наименование | Аналог/замена |
С1 | Конденсатор электролитический - 470мкФх35В | |
С2 | Конденсатор электролитический - 1000мкФх10В | |
С3 | Конденсатор электролитический - 10мкФх25В | |
С4 | Конденсатор керамический - 0,1мкФх50В | |
DA1 | Интегральный стабилизатор L7805 | |
DD1 | Микроконтроллер PIC16F676 | |
HG1 | 7-ми сегментный LED индикатор KEM-5631-ASR (OK) | Любой другой маломощный для динамической индикации и подходящий по подключению. |
R1* | Резистор 0,125Вт 91 кОм | SMD типоразмер 0805 |
R2* | Резистор 0,125Вт 4,7 кОм | SMD типоразмер 0805 |
R3 | Резистор 0,125Вт 5,1 Ом | SMD типоразмер 0805 |
R4 | Резистор 0,125Вт 10 кОм | SMD типоразмер 0805 |
R5-R12 | Резистор 0,125Вт 330 Ом | SMD типоразмер 0805 |
R13-R15 | Резистор 0,125Вт 4,3 кОм | SMD типоразмер 0805 |
VD1 | Стабилитрон BZV85C5V1 | 1N4733 |
VT1-VT3 | Транзистор BC546B | КТ3102 |
XP1-XP2 | Штыревой разъем на плату | |
XT1 | Клеммник на 4 контакта. |
Печатная плата вольтметра постоянного тока разрабатывалась с учетом воздействия возможных паразитных помех. На рисунке 3 показана печатная плата сторона проводников (плата на рисунке не в масштабе).
Рисунок 3 – Плата печатная вольтметра на PIC16F676 (сторона проводников).
На рисунке 4 – печатная плата сторона размещения деталей.
Рисунок 4 –Плата печатная сторона размещения деталей (плата на рисунке не в масштабе).
Что касается прошивки, то изменения были внесены не существенные:
- Добавлено отключение незначащего разряда;
- Увеличено время выдачи результата на семисегментный LED индикатор.
Вольтметр, собранный из заведомо рабочих деталей, начинает работать сразу же и в наладке не нуждается. В отдельных случаях возникает необходимость подстроить точность измерения подбором резисторов R1 и R2.
Внешний вид вольтметра показан на рисунках 5-6.
Рисунок 5 – Внешний вид вольтметра.
Рисунок 6 – Внешний вид вольтметра.
Вольтметр, рассматриваемый в статье успешно прошел испытания в домашних условиях, проверялся в автомобиле с питанием от бортовой сети. Сбоев не было. Может отлично подойти для длительного использования.
Интересное видео
Повторили изобретение? Присылайте фото на media собака pichobby.lg.ua.
Комментарии
П.С. по поводу ICPROG кстати - хрень полная, потом увидел в чем причина.
По поводу затирания инфы надо тоже проверить, но шил pic16f876, pic16f84 проблем не было.
Дальше было необходимо отлаживать программу внутрисхемно, поэтому и jdm был отложен. А тут понадобилось, поэтому и достал "по надобности".
Далее. По поводу константы. Может мы имеем ввиду одно и тоже, но если прописать все через __CONFIG то и проблем не будет. Это так повод к размышлению. Но.
Если у других работает, то и дергаться не стоит, думаю.